12.高级特性Bitmap使用姿势及应用场景介绍

一灰灰blogSpringBootDB系列Redisredis约 2601 字大约 9 分钟

前面介绍过redis的五种基本数据结构,如String,List, Set, ZSet, Hash,这些属于相对常见了;在这些基本结果之上,redis还提供了一些更高级的功能,如geo, bitmap, hyperloglog,pub/sub,本文将主要介绍Bitmap的使用姿势以及其适用场景,主要知识点包括

  • bitmap 基本使用
  • 日活统计应用场景中bitmap使用姿势
  • 点赞去重应用场景中bitmap使用姿势
  • 布隆过滤器bloomfilter基本原理及体验case

I. 基本使用

1. 配置

我们使用SpringBoot 2.2.1.RELEASE来搭建项目环境,直接在pom.xml中添加redis依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

如果我们的redis是默认配置,则可以不额外添加任何配置;也可以直接在application.yml配置中,如下

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    password:

2. 使用姿势

bitmap主要就三个操作命令,setbitgetbit以及 bitcount

a. 设置标记

setbit,主要是指将某个索引,设置为1(设置0表示抹去标记),基本语法如下

# 请注意这个index必须是数字,后面的value必须是0/1
setbit key index 0/1

对应的SpringBoot中,借助RestTemplate可以比较容易的实现,通常有两种写法,都可以

@Autowired
private StringRedisTemplate redisTemplate;

/**
 * 设置标记位
 *
 * @param key
 * @param offset
 * @param tag
 * @return
 */
public Boolean mark(String key, long offset, boolean tag) {
    return redisTemplate.opsForValue().setBit(key, offset, tag);
}

public Boolean mark2(String key, long offset, boolean tag) {
    return redisTemplate.execute(new RedisCallback<Boolean>() {
        @Override
        public Boolean doInRedis(RedisConnection connection) throws DataAccessException {
            return connection.setBit(key.getBytes(), offset, tag);
        }
    });
}

上面两种写法的核心区别,就是key的序列化问题,第一种写法使用默认的jdk字符串序列化,和后面的getBytes()会有一些区别,关于这个,有兴趣的小伙伴可以看一下我之前的博文: RedisTemplate配置与使用#序列化问题open in new window

b. 判断存在与否

getbit key index,如果返回1,表示存在否则不存在

/**
 * 判断是否标记过
 *
 * @param key
 * @param offest
 * @return
 */
public Boolean container(String key, long offest) {
    return redisTemplate.opsForValue().getBit(key, offest);
}

c. 计数

bitcount key,统计和

/**
 * 统计计数
 *
 * @param key
 * @return
 */
public long bitCount(String key) {
    return redisTemplate.execute(new RedisCallback<Long>() {
        @Override
        public Long doInRedis(RedisConnection redisConnection) throws DataAccessException {
            return redisConnection.bitCount(key.getBytes());
        }
    });
}

3. 应用场景

前面的基本使用比较简单,在介绍String数据结构的时候也提过,我们重点需要关注的是bitmap的使用场景,它可以干嘛用,什么场景下使用它会有显著的优势

  • 日活统计
  • 点赞
  • bloomfilter

上面三个场景虽有相似之处,但实际的应用场景还是些许区别,接下来我们逐一进行说明

a. 日活统计

统计应用或网站的日活,这个属于比较常见的case了,如果是用redis来做这个事情,首先我们最容易想到的是Hash结构,一般逻辑如下

  • 根据日期,设置key,如今天为 2020/10/13, 那么key可以为 app_20_10_13
  • 其次当用户访问时,设置field为userId, value设置为true
  • 判断日活则是统计map的个数hlen app_20_10_13

上面这个逻辑有毛病么?当然没有问题,但是想一想,当我们的应用做的很nb的时候,每天的日活都是百万,千万级时,这个内存开销就有点吓人了

接下来我们看一下bitmap可以怎么做

  • 同样根据日期设置key
  • 当用户访问时,index设置为userId,setbit app_20_10_13 uesrId 1
  • 日活统计 bitcount app_20_10_13

简单对比一下上面两种方案

当数据量小时,且userid分布不均匀,小的为个位数,大的几千万,上亿这种,使用bitmap就有点亏了,因为userId作为index,那么bitmap的长度就需要能容纳最大的userId,但是实际日活又很小,说明bitmap中间有大量的空白数据

反之当数据量很大时,比如百万/千万,userId是连续递增的场景下,bitmap的优势有两点:1.存储开销小, 2.统计总数快

c. 点赞

点赞的业务,最主要的一点是一个用户点赞过之后,就不能继续点赞了(当然某些业务场景除外),所以我们需要知道是否可以继续点赞

上面这个hash当然也可以实现,我们这里则主要讨论一下bitmap的实现逻辑

  • 比如我们希望对一个文章进行点赞统计,那么我们根据文章articleId来生成redisKey=like_1121,将userId作为index
  • 首先是通过getbit like_1121 userId 来判断是否点赞过,从而限制用户是否可以操作

Hash以及bitmap的选择和上面的考量范围差不多

d. 布隆过滤器bloomfilter

布隆过滤器可谓是大名鼎鼎了,我们这里简单的介绍一下这东西是啥玩意

  • 底层存储为一个bitmap
  • 当来一个数据时,经过n个hash函数,得到n个数值
  • 将hash得到的n个数值,映射到bitmap,标记对应的位置为1

如果来一个数据,通过hash计算之后,若这个n个值,对应的bitmap都是1,那么表示这个数据可能存在;如果有一个不为1,则表示这个数据一定不存在

请注意:不存在时,是一定不存在;存在时,则不一定

从上面的描述也知道,bloomfilter的底层数据结构就是bitmap,当然它的关键点在hash算法;根据它未命中时一定不存在的特性,非常适用于缓存击穿的问题解决

体验说明

Redis的布隆过滤器主要针对>=4.0,通过插件的形式提供,项目源码地址为: https://github.com/RedisBloom/RedisBloomopen in new window,下面根据readme的说明,简单的体验一下redis中bloomfilter的使用姿势

# docker 方式安装
docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest

# 通过redis-cli方式访问
docker exec -it redis-redisbloom bash

# 开始使用
# redis-cli
127.0.0.1:6379> keys *
(empty array)
127.0.0.1:6379> bf.add newFilter hello
(integer) 1
127.0.0.1:6379> bf.exists newFilter hello
(integer) 1
127.0.0.1:6379> bf.exists newFilter hell
(integer) 0

bloomfilter的使用比较简单,主要是两个命令bf.add添加元素,bf.exists判断是否存在,请注意它没有删除哦

4. 小结

bitmap位图属于一个比较精巧的数据结构,通常在数据量大的场景下,会有出现的表现效果;redis本身基于String数据结构来实现bitmap的功能支持,使用方式比较简单,基本上就下面三个命令

  • setbit key index 1/0: 设置
  • getbit key index: 判断是否存在
  • bitcount key: 计数统计

本文也给出了bitmap的三个常见的应用场景

  • 日活统计:主要借助bitcount来获取总数(后面会介绍,在日活十万百万以上时,使用hyperLogLog更优雅)
  • 点赞: 主要借助setbit/getbit来判断用户是否赞过,从而实现去重
  • bloomfilter: 基于bitmap实现的布隆过滤器,广泛用于去重的业务场景中(如缓存穿透,爬虫url去重等)

总的来讲,bitmap属于易用,巧用的数据结构,用得好即能节省内存也可以提高效率,用得不好貌似也不会带来太大的问题

II. 其他

0. 项目

系列博文

工程源码

Loading...